Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2817, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561399

RESUMO

Osteoarthritis (OA) is increasing in prevalence and has a severe impact on patients' lives. However, our understanding of biomarkers driving OA risk remains limited. We developed a model predicting the five-year risk of OA diagnosis, integrating retrospective clinical, lifestyle and biomarker data from the UK Biobank (19,120 patients with OA, ROC-AUC: 0.72, 95%CI (0.71-0.73)). Higher age, BMI and prescription of non-steroidal anti-inflammatory drugs contributed most to increased OA risk prediction ahead of diagnosis. We identified 14 subgroups of OA risk profiles. These subgroups were validated in an independent set of patients evaluating the 11-year OA risk, with 88% of patients being uniquely assigned to one of the 14 subgroups. Individual OA risk profiles were characterised by personalised biomarkers. Omics integration demonstrated the predictive importance of key OA genes and pathways (e.g., GDF5 and TGF-ß signalling) and OA-specific biomarkers (e.g., CRTAC1 and COL9A1). In summary, this work identifies opportunities for personalised OA prevention and insights into its underlying pathogenesis.


Assuntos
Osteoartrite , Humanos , Estudos Retrospectivos , Osteoartrite/diagnóstico , Osteoartrite/genética , Osteoartrite/tratamento farmacológico , Biomarcadores , Anti-Inflamatórios não Esteroides/uso terapêutico , Aprendizado de Máquina , Proteínas de Ligação ao Cálcio
2.
bioRxiv ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38585907

RESUMO

The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Yet, accurately delineating the variation in RNA translation represents a significant challenge. Here, we develop RiboTIE, a transformer model-based approach to map global RNA translation. We find that RiboTIE offers unparalleled precision and sensitivity for ribosome profiling data. Application of RiboTIE to normal brain and medulloblastoma cancer samples enables high-resolution insights into disease regulation of RNA translation.

3.
NAR Genom Bioinform ; 5(1): lqad021, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36879896

RESUMO

The correct mapping of the proteome is an important step towards advancing our understanding of biological systems and cellular mechanisms. Methods that provide better mappings can fuel important processes such as drug discovery and disease understanding. Currently, true determination of translation initiation sites is primarily achieved by in vivo experiments. Here, we propose TIS Transformer, a deep learning model for the determination of translation start sites solely utilizing the information embedded in the transcript nucleotide sequence. The method is built upon deep learning techniques first designed for natural language processing. We prove this approach to be best suited for learning the semantics of translation, outperforming previous approaches by a large margin. We demonstrate that limitations in the model performance are primarily due to the presence of low-quality annotations against which the model is evaluated against. Advantages of the method are its ability to detect key features of the translation process and multiple coding sequences on a transcript. These include micropeptides encoded by short Open Reading Frames, either alongside a canonical coding sequence or within long non-coding RNAs. To demonstrate the use of our methods, we applied TIS Transformer to remap the full human proteome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...